If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2-16j+39=0
a = 1; b = -16; c = +39;
Δ = b2-4ac
Δ = -162-4·1·39
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-10}{2*1}=\frac{6}{2} =3 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+10}{2*1}=\frac{26}{2} =13 $
| 5x-17=-x+7x | | 2+6x=3+20x | | 3x-10-2=6x-4x-2 | | 4x^2-9x+18=8x+3 | | -18/7=z+21/7 | | 9x+11+3x-15+2x+16=180 | | 9x^=27× | | 3x-4=1-7 | | 1/2(10x-6)=12 | | 2(3y-5=18 | | 3x+3x-15=85 | | 4x+6(x+14)=48 | | 3x-2/51-4x/10=5 | | 15x-24-4x=-78 | | |u|=6 | | 2x+2(6x-20)=58 | | 29f^2+49f=0 | | -6x+7(1-x)=4x+6 | | 6(f-10)=-60+6f | | 2x2(6x-20)=58 | | 9m-4(2m-9)=14 | | 60°+7x°-25°=30° | | 8(5-4c)+25c+7(=10 | | 9m−4(2m−9)=14 | | 9d+-20d-(-11d)+-17d+3d=-14 | | 12=s | | 60+7x-25=30 | | -56=1-3(-4x+3) | | 12=-6(9t-2)+54t | | 4(x-9)=-5(x+9) | | -2+x=-42-3x | | 2(x+15)=5(x+3) |